Distribution-Free Prediction Sets for Two-Layer Hierarchical Models
نویسندگان
چکیده
We consider the problem of constructing distribution-free prediction sets for data from two-layer hierarchical distributions. For iid data, can be constructed using method conformal prediction. The validity hinges on exchangeability which does not hold when groups observations come distinct distributions, such as multiple each patient in a medical database. extend methods to setting. develop CDF pooling, single subsampling, and repeated subsampling approaches construct unsupervised supervised settings. compare these terms coverage average set size. If asymptotic is acceptable, we recommend pooling its balance between empirical desire guarantees, then approach. Supplementary materials this article are available online.
منابع مشابه
Distribution Free Prediction Sets.
This paper introduces a new approach to prediction by bringing together two different nonparametric ideas: distribution free inference and nonparametric smoothing. Specifically, we consider the problem of constructing nonparametric tolerance/prediction sets. We start from the general conformal prediction approach and we use a kernel density estimator as a measure of agreement between a sample p...
متن کاملDistribution Free Prediction Bands
We study distribution free, nonparametric prediction bands with a special focus on their finite sample behavior. First we investigate and develop different notions of finite sample coverage guarantees. Then we give a new prediction band estimator by combining the idea of “conformal prediction” (Vovk et al., 2009) with nonparametric conditional density estimation. The proposed estimator, called ...
متن کاملDistribution-free Prediction Intervals in Mixed Linear Models
This paper considers prediction intervals for a future observation in the context of mixed linear models. For such prediction problems, it is reasonable to assume that the future observation is independent of the current ones. Our approach is distribution-free, that is, we do not assume that the distributions of the random effects and errors are normal or specified up to a finite number of para...
متن کاملOnline Learning for Distribution-Free Prediction
We develop an online learning method for prediction, which is important in problems with large and/or streaming data sets. We formulate the learning approach using a covariance-fitting methodology, and show that the resulting predictor has desirable computational and distribution-free properties: It is implemented online with a runtime that scales linearly in the number of samples; has a consta...
متن کاملFuzzy Hierarchical Location-Allocation Models for Congested Systems
There exist various service systems that have hierarchical structure. In hierarchical service networks, facilities at different levels provide different types of services. For example, in health care systems, general centers provide low-level services such as primary health care services, while the specialized hospitals provide high-level services. Because of demand congestion in service networ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2022
ISSN: ['0162-1459', '1537-274X', '2326-6228', '1522-5445']
DOI: https://doi.org/10.1080/01621459.2022.2060112